core.parameters.hyper_parameters¶
hyper_parameters
¶
Classes:
Name | Description |
---|---|
HyperParameters |
|
HyperParameters(log_data)
¶
Bases: Parameters
Methods:
Name | Description |
---|---|
extract_parameter |
Extract a parameter using keys, type, optional default, and optional value range. |
to_dict |
Return parameters as a dictionary, excluding internal fields. |
validate_log_data |
Validate and return log data if it's a dictionary. |
Attributes:
Name | Type | Description |
---|---|---|
epochs |
|
|
batch_size |
|
|
image_size |
|
|
seed |
|
|
validate |
|
|
train_set_split_ratio |
|
|
device |
|
|
parameters_data |
|
|
defaulted_keys |
set[str]
|
|
epochs = self.extract_parameter(keys=['epoch', 'epochs'], expected_type=int)
instance-attribute
¶
batch_size = self.extract_parameter(keys=['batch_size', 'batch'], expected_type=int, default=8)
instance-attribute
¶
image_size = self.extract_parameter(keys=['image_size', 'imgsz', 'img_size'], expected_type=int)
instance-attribute
¶
seed = self.extract_parameter(keys=['seed'], expected_type=int, default=0)
instance-attribute
¶
validate = self.extract_parameter(keys=['validate', 'val', 'validation'], expected_type=bool, default=False)
instance-attribute
¶
train_set_split_ratio = self.extract_parameter(keys=['prop_train_split', 'train_set_split_ratio'], expected_type=float, default=0.8)
instance-attribute
¶
device = self.extract_parameter(keys=['device'], expected_type=str, default='cuda:0')
instance-attribute
¶
parameters_data = self.validate_log_data(log_data)
instance-attribute
¶
defaulted_keys = set()
instance-attribute
¶
extract_parameter(keys, expected_type, default=..., range_value=None)
¶
extract_parameter(keys: list, expected_type: type[T], default: Any = ..., range_value: tuple[Any, Any] | None = None) -> T
extract_parameter(keys: list, expected_type: Any, default: Any = ..., range_value: tuple[Any, Any] | None = None) -> Any
Extract a parameter using keys, type, optional default, and optional value range.
Examples:
Extract a required string parameter that cannot be None:
parameter = self.extract_parameter(keys=["key1", "key2"], expected_type=str)
Extract a required integer parameter that can be None:
parameter = self.extract_parameter(keys=["key1"], expected_type=int | None)
Extract an optional float parameter within a specific range:
parameter = self.extract_parameter(keys=["key1"], expected_type=float, default=0.5, range_value=(0.0, 1.0))
Extract an optional string parameter with a default value:
parameter = self.extract_parameter(keys=["key1"], expected_type=str, default="default_value")
Extract an optional string parameter that can be None:
parameter = self.extract_parameter(keys=["key1"], expected_type=Union[str, None], default=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
list
|
A list of possible keys to extract the parameter. |
required |
|
type[T]
|
The expected type of the parameter, can use Union for optional types. |
required |
|
Any
|
The default value if the parameter is not found. Use ... for required parameters. |
...
|
|
tuple[Any, Any] | None
|
A tuple of two numbers representing the allowed range of the parameter. |
None
|
Returns:
Type | Description |
---|---|
Any
|
The parsed parameter. |
to_dict()
¶
Return parameters as a dictionary, excluding internal fields.
validate_log_data(log_data)
¶
Validate and return log data if it's a dictionary.