frameworks.ultralytics.services.model.predictor.classification¶
classification
¶
Classes:
Name | Description |
---|---|
UltralyticsClassificationModelPredictor |
A predictor class that handles model inference and result post-processing for classification tasks |
UltralyticsClassificationModelPredictor(model)
¶
Bases: ModelPredictor[UltralyticsModel]
A predictor class that handles model inference and result post-processing for classification tasks using the Ultralytics framework.
This class performs pre-processing of datasets, runs inference on batches of images, and post-processes the predictions to generate PicselliaClassificationPrediction objects for classification tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
UltralyticsModel
|
The context containing the loaded model and its configurations. |
required |
Methods:
Name | Description |
---|---|
pre_process_dataset |
Prepares the dataset by extracting and returning a list of image file paths from the dataset directory. |
run_inference_on_batches |
Runs inference on each batch of images using the model. |
post_process_batches |
Post-processes all inference results by matching predictions with assets. |
prepare_batches |
|
get_picsellia_label |
Get or create a PicselliaLabel from a dataset category name. |
get_picsellia_confidence |
Wrap a confidence score in a PicselliaConfidence object. |
get_picsellia_rectangle |
Create a PicselliaRectangle from bounding box coordinates. |
Attributes:
Name | Type | Description |
---|---|---|
model |
TModel
|
|
model = model
instance-attribute
¶
pre_process_dataset(dataset)
¶
Prepares the dataset by extracting and returning a list of image file paths from the dataset directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
TBaseDataset
|
The dataset containing image directories structured by class. |
required |
Returns:
Type | Description |
---|---|
list[str]
|
list[str]: A list of full image file paths. |
run_inference_on_batches(image_batches)
¶
Runs inference on each batch of images using the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
list[list[str]]
|
Batches of image paths. |
required |
Returns:
Type | Description |
---|---|
list[Results]
|
list[Results]: A list of inference result objects, one per batch. |
post_process_batches(image_batches, batch_results, dataset)
¶
Post-processes all inference results by matching predictions with assets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
list[list[str]]
|
List of image batches. |
required |
|
list[Results]
|
Corresponding model outputs for each batch. |
required |
|
TBaseDataset
|
Dataset used to resolve label references. |
required |
Returns:
Type | Description |
---|---|
list[PicselliaClassificationPrediction]
|
list[PicselliaClassificationPrediction]: Formatted predictions. |
prepare_batches(image_paths, batch_size)
¶
get_picsellia_label(category_name, dataset)
¶
Get or create a PicselliaLabel from a dataset category name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
The name of the label category. |
required |
|
TBaseDataset
|
Dataset that provides label access. |
required |
Returns:
Name | Type | Description |
---|---|---|
PicselliaLabel |
PicselliaLabel
|
Wrapped label object. |
get_picsellia_confidence(confidence)
¶
Wrap a confidence score in a PicselliaConfidence object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
float
|
Prediction confidence score. |
required |
Returns:
Name | Type | Description |
---|---|---|
PicselliaConfidence |
PicselliaConfidence
|
Wrapped confidence object. |
get_picsellia_rectangle(x, y, w, h)
¶
Create a PicselliaRectangle from bounding box coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Top-left x-coordinate. |
required |
|
int
|
Top-left y-coordinate. |
required |
|
int
|
Width of the box. |
required |
|
int
|
Height of the box. |
required |
Returns:
Name | Type | Description |
---|---|---|
PicselliaRectangle |
PicselliaRectangle
|
Rectangle wrapper for object detection. |