Skip to content

frameworks.ultralytics.services.model.predictor.object_detection

object_detection

Classes:

Name Description
UltralyticsDetectionModelPredictor

A predictor class that handles inference and result formatting for object detection tasks

UltralyticsDetectionModelPredictor(model)

Bases: ModelPredictor[UltralyticsModel]

A predictor class that handles inference and result formatting for object detection tasks using the Ultralytics framework.

Parameters:

Name Type Description Default

model

UltralyticsModel

The detection model with its weights and configuration loaded.

required

Methods:

Name Description
run_inference_on_batches

Runs inference on each image batch using the model.

post_process_batches

Converts raw model outputs into structured rectangle predictions.

format_predictions

Transforms raw model predictions into Picsellia-compatible rectangle, label, and confidence objects.

rescale_normalized_box

Rescales a bounding box from normalized coordinates to pixel dimensions.

cast_type_list_to_int

Converts all values in a box list to integers.

pre_process_dataset

Extracts all image paths from the dataset's image directory.

prepare_batches
get_picsellia_label

Get or create a PicselliaLabel from a dataset category name.

get_picsellia_confidence

Wrap a confidence score in a PicselliaConfidence object.

get_picsellia_rectangle

Create a PicselliaRectangle from bounding box coordinates.

Attributes:

Name Type Description
model TModel

model = model instance-attribute

run_inference_on_batches(image_batches)

Runs inference on each image batch using the model.

Parameters:

Name Type Description Default
image_batches
list[list[str]]

A list of image batches.

required

Returns:

Type Description
list[Results]

list[Results]: A list of inference result objects, one per batch.

post_process_batches(image_batches, batch_results, dataset)

Converts raw model outputs into structured rectangle predictions.

Parameters:

Name Type Description Default
image_batches
list[list[str]]

List of image batches.

required
batch_results
list[Results]

Model predictions per batch.

required
dataset
TBaseDataset

Dataset context used for label resolution.

required

Returns:

Type Description
list[PicselliaRectanglePrediction]

list[PicselliaRectanglePrediction]: Structured prediction results per image.

format_predictions(asset, prediction, dataset)

Transforms raw model predictions into Picsellia-compatible rectangle, label, and confidence objects.

Parameters:

Name Type Description Default
asset
Asset

The asset corresponding to the image.

required
prediction
Results

The prediction results for the image.

required
dataset
TBaseDataset

The dataset used to retrieve label mappings.

required

Returns:

Name Type Description
tuple tuple[list[PicselliaRectangle], list[PicselliaLabel], list[PicselliaConfidence]]

Lists of PicselliaRectangle, PicselliaLabel, and PicselliaConfidence objects.

rescale_normalized_box(box, width, height) staticmethod

Rescales a bounding box from normalized coordinates to pixel dimensions.

Parameters:

Name Type Description Default
box
list

Normalized box in [x_min, y_min, x_max, y_max] format.

required
width
int

Image width.

required
height
int

Image height.

required

Returns:

Type Description
list[int]

list[int]: Rescaled box in [x, y, width, height] format.

cast_type_list_to_int(box) staticmethod

Converts all values in a box list to integers.

Parameters:

Name Type Description Default
box
list[float]

Bounding box coordinates.

required

Returns:

Type Description
list[int]

list[int]: Bounding box with integer values.

pre_process_dataset(dataset)

Extracts all image paths from the dataset's image directory.

Parameters:

Name Type Description Default
dataset
TBaseDataset

The dataset object containing the image directory.

required

Returns:

Type Description
list[str]

list[str]: A list of file paths to the dataset images.

prepare_batches(image_paths, batch_size)

get_picsellia_label(category_name, dataset)

Get or create a PicselliaLabel from a dataset category name.

Parameters:

Name Type Description Default
category_name
str

The name of the label category.

required
dataset
TBaseDataset

Dataset that provides label access.

required

Returns:

Name Type Description
PicselliaLabel PicselliaLabel

Wrapped label object.

get_picsellia_confidence(confidence)

Wrap a confidence score in a PicselliaConfidence object.

Parameters:

Name Type Description Default
confidence
float

Prediction confidence score.

required

Returns:

Name Type Description
PicselliaConfidence PicselliaConfidence

Wrapped confidence object.

get_picsellia_rectangle(x, y, w, h)

Create a PicselliaRectangle from bounding box coordinates.

Parameters:

Name Type Description Default
x
int

Top-left x-coordinate.

required
y
int

Top-left y-coordinate.

required
w
int

Width of the box.

required
h
int

Height of the box.

required

Returns:

Name Type Description
PicselliaRectangle PicselliaRectangle

Rectangle wrapper for object detection.