steps.ultralytics.model.evaluator¶
evaluator
¶
Functions:
Name | Description |
---|---|
evaluate_ultralytics_model |
Evaluate an Ultralytics model on a given dataset and log evaluation metrics. |
evaluate_ultralytics_model(model, dataset)
¶
Evaluate an Ultralytics model on a given dataset and log evaluation metrics.
This step handles evaluation for classification, object detection, and segmentation models trained with the Ultralytics framework. It:
- Retrieves the current training context from the pipeline.
- Chooses the appropriate predictor class based on the model's task type.
- Runs inference on the provided dataset in batches.
- Post-processes predictions into Picsellia-compatible format.
- Computes evaluation metrics and logs them to the experiment.
Supported tasks
- Classification
- Object Detection
- Segmentation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
UltralyticsModel
|
The trained Ultralytics model to evaluate. |
required |
|
TBaseDataset
|
The dataset to evaluate the model on. |
required |
Returns:
Type | Description |
---|---|
None
|
None |